2X^2+(29/20)x-(3/10)=0

Simple and best practice solution for 2X^2+(29/20)x-(3/10)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2X^2+(29/20)x-(3/10)=0 equation:



2X^2+(29/20)X-(3/10)=0
Domain of the equation: 20)X!=0
X!=0/1
X!=0
X∈R
We add all the numbers together, and all the variables
2X^2+(+29/20)X-(+3/10)=0
We multiply parentheses
2X^2+29X^2-(+3/10)=0
We get rid of parentheses
2X^2+29X^2-3/10=0
We multiply all the terms by the denominator
2X^2*10+29X^2*10-3=0
Wy multiply elements
20X^2+290X^2-3=0
We add all the numbers together, and all the variables
310X^2-3=0
a = 310; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·310·(-3)
Δ = 3720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3720}=\sqrt{4*930}=\sqrt{4}*\sqrt{930}=2\sqrt{930}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{930}}{2*310}=\frac{0-2\sqrt{930}}{620} =-\frac{2\sqrt{930}}{620} =-\frac{\sqrt{930}}{310} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{930}}{2*310}=\frac{0+2\sqrt{930}}{620} =\frac{2\sqrt{930}}{620} =\frac{\sqrt{930}}{310} $

See similar equations:

| 8.4x-14.8=44 | | (10+1.5x)-(6+1x)=0 | | -36=5x-18(4) | | x=0.62*980 | | x+3(90-x)=210 | | 30-15=3x-15 | | 57+3=48+n | | n=10=9n-3 | | 14k-9=12 | | 3(x-1)=2x+( | | x-5(4+2x)=-65 | | F(x)=2x^2-5x+2=0 | | 3(3x+9)-4=-7x-89 | | -36=5x-18x4 | | 9=u+5 | | 3x-5(x-2)=-8+4x-30 | | 2m+23-5m=5 | | 12r=8=12 | | -4(x+6)-3(-1-2x)=-5 | | 2=4.76-x | | 0.4*x=440 | | +3g=3g+5 | | -5/6m=60 | | 2(16x)=x+7 | | -5x-6=2x-3 | | 10=3-m/2 | | 2(a-4)=4a-(2a-80 | | 4(5x+3)-9x=11x+3 | | Y=(-13x+92)/2 | | |11x-35|=-31 | | 40=23-x | | 7n+4n=-22 |

Equations solver categories